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The structure of TRuO3(T 5 Ba0.875Sr0.125) has been analyzed
using the bond valence procedures developed by Brown [e.g., Acta
Crystallogr. Sect. B 48, 553 (1992)] and O’Keeffe [Structure and
Bonding 71, 161 (1989)]. The experimental results, which show
‘‘overbonded’’ and ‘‘underbonded’’ T and Ru cations, respective-
ly, are explained by the fact that the theoretical T–O and Ru–O
distances that completely satisfy the valence requirements of the
atoms are incommensurate under the constraints imposed by the
site symmetries of the special positions occupied by the atoms.
Starting from a model derived from sphere packing geometry
and the theoretical bond lengths, it is possible to evaluate the
lattice parameters and the atomic shifts that minimize the strains
introduced into the structure by the incommensurability of the
theoretical Ru–O and T–O distances, and to arrive at a model
quite close to the experimental results without making use of any
prior knowledge of the structure. According to this analysis,
therefore, the observed structure is interpreted as resulting from
a compromise between the different bond distance requirements
of the Ru and T cations.

Key Words: structural modeling; bond-valence method; sphere
packing; barium strontium ruthenium oxide.

INTRODUCTION

One way to gain insight into the crystal chemistry of a
large number of oxide compounds is to model their struc-
tures in terms of bond valences and their corresponding
bond distances. The general principles of the bond valence
method have been fully developed (1—4) and may be sum-
marized by writing the equations
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where v
ij

is the bond valence associated with a bond of
length d

ij
between atoms i and j, the bond valence para-

meter R
ij

is the distance corresponding to a bond valence
v
ij
"1.0 v.u., and »

i
is the valence of atom i. The parameters

R
ij

depend on the nature and the valences of atoms i and j,
and their values have been tabulated for most atomic spe-
cies (5—7). A significant advantage of the bond valence
method of interpretation is that it makes no a priori assump-
tion as to the nature of the chemical bond.

In many cases, a comparison between the theoretical
atomic valences and the bond valence sums calculated from
the observed bond distances allows us: (i) to check the
correctness of a structure determination; (ii) to locate atoms
that are difficult to identify by X-ray or neutron diffraction
(such as O and F, for example); (iii) to distinguish between
oxidation states of transition metals. When the observed
bond lengths are affected by factors other than the valences
of the atoms involved in the bonding, however, the ‘‘appar-
ent’’ bond valences v@

ij
calculated from them do not satisfy

Eqs. [2] and [3] and, as a consequence, the above proced-
ure cannot be used to analyze the experimental structures.
In these cases, bond valences are calculated first from a sys-
tem of Eqs. [2] and [3], and from these the corresponding
bond lengths are obtained. These are the distances that
satisfy exactly the valence requirements of the atoms; i.e.,
they are the distances that would exist in a structure without
crystallographic constraints. This ideal configuration must
be changed to conform to an assumed or known space
group symmetry and other steric requirements imposed by
the initial model of the structure. From this point, a
modeling process is carried out in which lattice and posi-
tional parameters are varied until the extent to which
Eqs. [2] and [3] are violated over the whole structure is
minimized. Remarkable examples of the application of this
method are provided by a study of the strain relaxation
mechanisms in YBa

2
Cu

3
O

x
, for x"6.0 and 7.0 (8), and by

the prediction of the crystal structures and phase diagram in
the system La

2
NiO

4`x
(3).

Since initial models can be easily derived from any as-
sumed packing sequence, structures based on sphere pack-
ing geometry provide ideal systems to test the power of the
0022-4596/99 $30.00



FIG. 1. Schematic representation of the structure of ¹RuO
3

(¹"

Ba
0.875

Sr
0.125

), showing the Ru
2
O

9
dimers of the face-sharing RuO

6
octahedra. The dimers are joined together by corner-sharing. The letters
c and f indicate the layers on which the octahedra share corners and faces,
respectively.

TABLE 1
Structural Model Derived from the Sequence . . . XYXZ . . .

for a Compound TBO3 (Space Group P63 /mmc a 5 5.8 As ,
c 5 9.5 As )

Atom Position x y z

¹(1) 2a 31 m 0 0 0
¹(2) 2c 61 m2 1/3 2/3 1/4
Ru 4 f 3m 2/3 1/3 z

R
"1/8

O(1) 6g 2/m 1/2 1/2 0
O(2) 6h mm 2x

0
x
0
"1/6 1/4
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bond valence method for predicting crystal structures. In an
ongoing research program on Ru-based oxides, a number of
compounds were prepared (9), with structures that are based
on close packing of hexagonal AO

3
layers stacked on top of

one another with a variety of sequences. Bond valence sums
calculated from the observed bond distances invariably
show significant departures from the expected atomic val-
ences. Based on the quality of the agreement between ob-
served and calculated intensities (10), these discrepancies
cannot be attributed to errors in the structural models, and
a possible explanation of the observed anomalies could be
the presence of internal strains. In view of this, we decided to
apply the bond-valence method to the relatively simple case
of a four-layer compound, ¹RuO

3
(¹"Ba

0.875
Sr

0.125
)

(Fig. 1), with the purpose not only of predicting its structure,
and thus confirming or excluding the presence of internal
strains, but also of gaining insight into the geometrical
factors that affect the final configuration of the atoms.

MODELING OF THE STRUCTURE

A. 2cfcf2 Packing of Spheres

If we assume a structure ABO
3

in which the A and O
spheres are packed to form hexagonal AO

3
layers, and if we

stack these layers on top of each other so that the BO
6

octahedra share faces and corners alternately along the
direction of stacking, we obtain a configuration that may be
represented with the sequence

c f c f

0, 0, 0 2
3
, 1
3
, 1
4

0, 0, 1
2

1
3
, 2
3
, 3
4

X ½ X Z

B(1) B (2) B (3) B(4)

1
3
, 2
3
, 1
8

1
3
, 2
3
, 3
8

2
3
,1
3
, 5
8

2
3
, 1
3
, 7
8

.

In this scheme, the symbols X, ½, Z represent the AO
3

layers; the triplets on top of each layer represent the coordi-
nates of A referred to the natural hexagonal axes; and the
letters c and f specify whether the layer is one on which the
BO

6
octahedra share corners or faces, respectively. The

B atoms are located between the AO
3

layers with the coor-
dinates indicated at the bottom of the sequence. The coordi-
nates show that atoms B (1) and B (2) (and atoms B (3) and
B (4)) are directly superposed at a distance c/4, where c is the
direction of stacking, while cations B (2) and B (3) are shifted
from one another by 1

3
, 2
3
, 1
4
. As a consequence of this config-

uration, the B(1)O
6

and B (2)O
6

octahedra share a face (as
B (3)O

6
and B (4)O

6
do), while B (2)O

6
and B(3)O

6
share

corners. The structure corresponding to this configuration
has the symmetry of space group P6

3
/mmc, with the atomic

coordinates indicated in Table 1. If the A and O spheres
have the same radius r, the lattice parameters of the
structure are a

H
"4r, c

H
"8rJ2

3
, i.e., c

H
/a

H
"2J2

3
. If we

assume the radii Ba2`(XII)"1.61 As , Sr2`(XII)"1.44 As ,
and O2~(VI)"1.40 As (11) the average value of r is 1.45 As ,
and therefore a

H
"5.8 As and c

H
"9.5 As .

B. Determination of Bond Valences

The interpretation of Eqs. [2] and [3] and the procedures
used to set up a system of equations sufficient to determine
uniquely the unknowns v

ij
, are described in detail in a num-

ber of papers (e.g., (3, 4) ). The case of our model is illustrated
in Table 2, where the formula unit, the atomic coordina-
tions, the connectivity matrix (4), the system of Eqs. [2] and
[3], and the calculated values of v

ij
have been indicated.

With our conditions, the bond valences of all the ¹—O
bonds are equal to 1

6
v.u., and those of the two Ru—O bonds

are 2
3
v.u. From these v

ij
we may calculate the corresponding

bond distances d
ij

using the values of the bond valence
parameters R

ij
(As ): Ba—O"2.29, Sr—O"2.118, ¹—O"

2.269, Ru4`—O"1.834. The results of the calcula-
tions described so far are given in column 1 of Table 3. We
want to point out that the bond distances ¹—O"2.932 As
and Ru—O"1.984 As are the theoretical separations that



TABLE 2
Formula Unit, Atomic Coordinations, Connectivity Matrix and

Bond-Valence Sum Equations for the Structure of TRuO3

Formula unit: ¹(1)¹(2)B
2
O(1)

3
O(2)

3
Atomic coordinations:

M¹(1)NO(1)
6
O(2)

6
M¹(2)NO(1)

6
O(2)

6
MBNO(1)

3
O(2)

3
MO(1)N¹(1)

2
¹(2)

2
B
2

MO(2)N¹(1)
2
¹(2)

2
B

2

G
3O(1) 3O(2)

¹(1) 6]v
11

6]v
12

¹(2) 6]v
21

6]v
22

2B 6]v
31

6]v
32
H

with ¹"Ba
0.875

Sr
0.125

and B"Ru:a

G
3v

11
#3v

12
"1

3v
21
#3v

22
"1

3v
31
#3v

32
"4

v
11
#v

21
#v

31
"1

v
11
!v

12
#v

22
!v

21
"0

v
11
!v

12
#v

32
!v

31
"0

v
11
"v

12
"v

21
"v

22
"1/6

v
31
"v

32
"2/3

aSince

v
1i

v
2i

"1"
»
T(1)

»
T(2)

and
»
i1

»
i2

"1"
3»

O(1)
3»

O(2)

this matrix can be solved with the method of O’Keeffe given in Ref. (4).

TABLE 3
Models of the Structure of TRuO3

1 2 3 4 5 6

a 5.864 5.750 5.750 5.7179(1) 0.032
c 9.576 9.390 9.390 9.4897(2) !0.100
c/a 1.633 1.633 1.633 1.6596(1) !0.027
x
0

1/6 1/6 1/6 0.1770 0.1769(2) 0.000
z
R

1/8 1/8 1/8 0.1175 0.1167(2) 0.001

Bond valences
¹(1)—O(1)]6 0.167 0.167 0.194 0.194 0.203 !0.009
¹(1)—O(2)]6 0.167 0.167 0.194 0.165 0.159 0.006
¹(2)—O(1)]6 0.167 0.167 0.194 0.165 0.159 0.007
¹(2)—O(2)]6 0.167 0.167 0.194 0.193 0.202 !0.009
Ru—O(1)]3 0.667 0.524 0.584 0.651 0.660 !0.009
Ru—O(1)]3 0.667 0.524 0.584 0.651 0.640 0.011

Bond-valence sums
¹(1) 2.00 2.00 2.33 2.16 2.17
¹(2) 2.00 2.00 2.33 2.33 2.33
Ru 4.00 3.14 3.50 3.90 3.90
O(1) 2.00 1.72 1.95 2.08 2.10
O(2) 2.00 1.72 1.95 2.02 2.00
R 0.00 0.42 0.31 0.17 0.18

Bond distances
¹(1)—O(1) 2.932 2.932 2.875 2.875 2.8589(1) 0.016
¹(1)—O(2) 2.932 2.932 2.875 2.936 2.950(1) !0.014
¹(2)—O(1) 2.932 2.932 2.875 2.875 2.8901(1) !0.015
¹(2)—O(2) 2.932 2.932 2.875 2.877 2.8607(1) 0.016
Ru—O(1) 1.984 2.073 2.033 1.993 1.988(1) 0.005
Ru—O(2) 1.984 2.073 2.033 1.993 2.000(2) !0.007
Ru—Ru 2.394 2.347 2.488 2.528(3) !0.040
O(2)—O(2) 2.932 2.875 2.697 2.683(3) 0.014

Note. 1, data obtained from the bond valence sum equations; 2, com-
mensurate structure assuming a"2[¹—O]"5.864 As ; 3, model obtained
with the lattice parameters that minimize the R index (Fig. 2); 4, model
obtained by changing x

0
and z

R
according to Eqs. [5] and [6]; 5, experi-

mental structure (10); 6, differences 4!5.

BOND-VALENCE ANALYSIS OF (Ba
0.875

Sr
0.125

)RuO
3

71
satisfy the valence requirements of the atoms, and they are
not necessarily commensurate to form a structure con-
strained as indicated in Table 1. In order to find out whether
this is the case for our model, we need to make use of the
bond distance equations shown in Table 4. From these
expressions it can be seen that the equality of all the ¹—O
and Ru—O separations can be preserved if, and only if,
x
0
"1

6
, z

R
"1

8
, and c"2aJ2

3
. With these parameters and

with a"2[¹(1)—O(1)]"5.864 As , we obtain the structure
of column 2 of Table 3. The value Ru—O"2.073 As evalu-
ated for this model is much larger than the theoretical
distance of 1.984 As predicted by the bond valence sum
equations and indicates that the theoretical ¹—O and Ru—O
distances that satisfy Eqs. [2] and [3] are incommensurate
under the geometrical constraints imposed by space group
symmetry and special position assignments of our model.
Under these conditions, structural strains are unavoidable
and we should therefore expect contractions and expansions
of the ¹ and Ru coordination polyhedra. In the structure of
column 2, the valences »(Ru)"3.14 v.u. and »(O)"1.72
v.u. are far too low compared with the expected values of 4.0
and 2.0 v.u., respectively. An equivalent result, but with the
polyhedra around the ¹ atoms considerably contracted, is
obtained if we calculate the a parameter with the expression

a"2[Ru—O]J2"5.612 As . With this assignment we ob-
tain, from Table 4, c"9.164 As , ¹—O"2.806 As , and
»(¹)"2.81 v.u. (We want to point out that the experi-
mental lattice parameters, a"5.718 As and c"9.490 As , are
between these values and those reported in column 2.)

The discrepancies between calculated and expected val-
ences are reflected by the high value of the index R
(0.42 v.u.), which is the root mean square of the differences
between the valence sums around each atom and the corres-
ponding theoretical valences, i.e.,

R"C
+

i
(+

j
v@
ij
!»

i
)2

n D
1@2

14i4n. [4]



TABLE 4
Bond Distance Equations for the Structure of TRuO3

¹(1)—O(1) "a/2
¹(1)—O(2) "(3x2

0
a2#c2/16)1@2

¹(2)—O(1) "(a2/12#c2/16)1@2
¹(2)—O(2) "(1

3
#3x2

0
!x

0
)1@2a

Ru—O(1) "(a2/12#z2
R
c2)1@2

Ru—O(2) "[(3x2
0
!2x

0
#1/3)a2#(z2

R
!z

R
/2# 1

16
)c2]1@2

O(2)—O(2) "(1!3x
0
)a

Ru—Ru "(1/2!2z
R
)c
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In this expression, v@
ij

are the ‘‘apparent’’ bond valences that
are obtained by forcing the bond distances to be commen-
surate. From this definition it follows that R is a measure of
the extent to which Eq. [2] is violated over the whole
structure (3). A value of R larger than about 0.2 v.u. is an
indication that the structure may not be stable at room
temperature, and consequently the model of column 2 is
unacceptable.

C. Relaxation of the Structure

The most obvious mechanism to relax the model of col-
umn 2 is to reduce the Ru—O distance by decreasing the
a and c lattice parameters. The procedure used in the pres-
ent case has been to decrease a and c in steps by keeping (i)
the c/a ratio fixed at 2J2

3
, and (ii) the z

R
and x

0
positional

parameters fixed at their aristotype values of 1
8
and 1

6
, respec-

tively. Under these conditions, the equality of the bond
distances, required by the bond valence sum equations, is
preserved. For each value of a, bond distances were cal-
culated, and from these were calculated the bond valences,
bond valence sums, and the index R. The plot of R versus a,
shown in Fig. 2, has a minimum corresponding to a:
5.75 As , c"9.39 As . The model obtained with these lattice
FIG. 2. Plot of the R index versus the lattice parameter a.
parameters is shown in column 3 of Table 3. The effect of
reducing the unit cell volume has been to decrease both
¹—O and Ru—O distances, and thus increase the apparent
valences of both ¹ and Ru. As a consequence of these
changes, the new index R of 0.31 v.u. is much better than the
previous one, but still too high to ensure a stable structure.

A second step for relaxing the model consists in varying
the positional parameters z

R
and x

0
so that » (Ru) increases

and »(¹ ) decreases. The bond valence equations show that
the Ru—O(1) distance can be decreased only by decreasing
the value of z

R
. However, the expression (z2

R
!z

R
/2# 1

16
),

which appears in the equation of Ru—O(2), will increase
when z

R
decreases, because z2

R
is much smaller than z

R
(z

R
is

of the order of 0.1). In order to decrease also Ru—O(2),
therefore, we have to increase x

0
. An increase of x

0
, how-

ever, will correspond to a decrease of the O(2)—O(2) dis-
tance. Assuming an O(2)—O(2) separation of 2.7 As as a
lower limit for an acceptable nonbonded distance, and im-
posing the condition Ru—O(1)"Ru—O(2), as required by
the bond-valence sum equations, we have

x
0
"

a!2.7

3a
[5]

and

z
R
"A6x2

0
!4x

0
#

1

2B
a2

c2
#

1

8
. [6]

DISCUSSION

The final model, obtained with the distance O(2)—O(2)"
2.7 As , is reported in column 4 of Table 3 and is compared
with the experimental results shown in column 5. Bond
distances agree well within 0.02 As , and bond valences better
than 0.01 v.u. The close agreement between calculated and
observed values provides strong evidence that the factors
taken into consideration in modeling the structure are basi-
cally those that affect the arrangement of the atoms in the
real structure. These factors can be summarized as follows:
(i) the basic atomic configuration, including space group
symmetry and Wyckoff positions of the atoms, is dictated by
the geometry governing the close packing of spheres; (ii) the
lattice parameters of the hexagonal cell are the result of
a compromise to fit together the incommensurate Ru—O
and ¹—O distances demanded by the Ru and ¹ valence
requirements; and (iii) the shifts of z

R
and x

0
from their

aristotype values have the effect of pulling apart the two Ru
atoms inside the face-sharing RuO

6
octahedra and of inter-

posing oxygen atoms O(2) between these atoms, as shown in
Fig. 3. This last factor is the so-called ‘‘shielding effect,’’
resulting in a configuration in which the Ru—O(2) distances
are shortened and the valence requirements of Ru and O are



FIG. 3. The arrows represent the shifts caused by an increase of the
atomic coordinate x

0
, defined in Table 1. The z coordinates of Ru atoms

are indicated next to the small full circles representing these atoms in the
figure.
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satisfied better than by placing the atoms in their aristo-
type positions. The bond-valence sum of Ru gives
»(Ru)"3.90 v.u. This value is close to the expected valence
of Ru in this compound (4.00 v.u.), and it indicates that Ru
interacts predominantly with oxygen. Direct Ru—Ru inter-
actions, if present, must therefore be weak. This conclusion
is consistent with electric measurements showing that the
compound is a semiconductor at room temperature (9).

The worst agreement between observed and calculated
values is obtained for the c parameter and the Ru—Ru
distance. These discrepancies may well be due to the same
cause. The Ru—Ru separations determined experimentally
in compounds similar to ¹RuO

3
are larger than the dis-

tance of 2.49 As of our model. For example, separations of
about 2.7 As were found in compounds of formula
Ba

3
MRu

2
O

9
(M"Zn, Co, Ni), which have the same

Ru
2
O

9
units of face-sharing octahedra (12, 13). A value

of 2.53 As was found for the nine-layer structure of
BaRuO
3

(10). The only mechanism left to increase the
Ru—Ru distance in our model would be to increase the
c parameter. This change would also improve the values of
»(¹1) and » (¹2). This gain, however, would be offset by
the fact that the Ru—O distance would also increase, lower-
ing »(Ru) below 3.9 v.u. At this stage, the method is prob-
ably not sensitive enough to permit a further refinement of
the model, and for this reason no attempts were made to
change the c parameter from its final value of 9.39 As .

Strained structures are formed when it is geometrically
impossible to accommodate the bond distances calculated
from the atomic valences in a configuration defined by
a given set of constraints. Our analysis proves that, within
these constraints, a strained structure will always tend to
assume a configuration that optimizes the bond-valence
sums of the atoms. In the case of ¹RuO

3
, for example, the

lattice parameters could be adjusted to values close to the
experimental results by simply minimizing the R index.
Other steric factors, however, also play a role and have to be
monitored in building a model. Thus, the shifts of the z

R
and

x
0

positional parameters were limited by the shortening of
the O(2)—O(2) separations below acceptable values. Finally,
we want to point out that the building of our model has
been carried out without taking into consideration any of
the experimental results. This is the same as saying that the
structure of column 4 in Table 3 has been determined ab
initio, ignoring any prior knowledge of the structure. Similar
analyses designed to explore the general applicability of this
approach and based on different sphere packing schemes
are now being made or are under consideration, and the
results will be published in due course.
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